Abstract
Electroencephalography (EEG) eye state classification is important and useful to detect human's cognition state. Previous research has validated the feasibility of machine learning and statistical approaches for EEG eye state classification. This paper proposes a novel EEG eye state identification approach based on Incremental Attribute Learning (IAL). Experimental results show that, with proper feature extraction and feature ordering, IAL can not only cope with time series classification problems efficiently, but also exhibit better classification performance in terms of classification error rates in comparison with other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.