Abstract
It is of great significance to identify the characteristics of time series to quantify their similarity and classify different classes of time series. We define six types of triadic time-series motifs and investigate the motif occurrence profiles extracted from the time series. Based on triadic time series motif profiles, we further propose to estimate the similarity coefficients between different time series and classify these time series with high accuracy. We validate the method with time series generated from nonlinear dynamic systems (logistic map, chaotic logistic map, chaotic Henon map, chaotic Ikeda map, hyperchaotic generalized Henon map and hyperchaotic folded-tower map) and retrieved from the UCR Time Series Classification Archive. Our analysis shows that the proposed triadic time series motif analysis performs better than the classic dynamic time wrapping method in classifying time series for certain datasets investigated in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.