Abstract
Continuous structural integrity monitoring (SIM) can be a valuable complementary tool to the current practice of periodic inspections in detecting damage in jacket platforms. This paper demonstrates the technical feasibility of adopting the recent advances in onshore SIM technology for offshore jacket platforms. Both the analysis method and hardware technology are investigated. To demonstrate the feasibility of the analysis method, a time series based damage detection and localization algorithm is evaluated. Nodal acceleration and brace strain responses from a jacket platform computer model are simulated and used to determine the Autoregressive (AR) model coefficients. Mahalanobis distance calculated from the first 10 AR coefficients is used as the damage feature (DF). The DF’s from three different damage cases comprising of missing member, dented member (stiffness reduction), and cracked member (nonlinear behavior), respectively, are compared with those from the healthy baseline case to detect and localize damage. To demonstrate the feasibility of hardware technology, a survey of the state-of-the-art in wireless sensor network technology is conducted. The survey shows that wireless accelerometers and strain gauges packaged for underwater use can be fitted in a wireless sensor network throughout the jacket using the electromagnetic communication approach. A conceptual configuration of underwater damage detection wireless sensor network for offshore jacket platforms is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.