Abstract

AbstractBrady Hot Springs geothermal field has exhibited subsidence, as measured by interferometric synthetic aperture radar (InSAR). Previous studies have examined both the temporal evolution of the deformation from 2004 through 2016 and the spatial extent of the deformation, directly relating the observed subsidence to volumetric changes below the surface. We extend the modeling at Brady to analyze a data set of interferometric pairs spanning from the end of 2003 through 2018. We examine spatial and temporal trends in the observed deformation by time‐series analysis of each of the 1,656 cubic voxels in a parameterized elastic dislocation model to identify areas where the subsurface volume changes as a function of time. Joint time‐series analysis of Global Positioning System and InSAR pairs confirm significant changes in rates of volume change during time intervals when well operations were varied. The rate of subsidence increases with increased injection, consistent with the identification of thermal contraction of the rock matrix as the dominant driving mechanism. Conversely, the modeled volume increases when pumping ceases, suggesting thermal expansion of the rock matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.