Abstract

In this paper we consider the problem of the limits concerning the physical information that can be extracted from the analysis of one or more time series (light curves) typical of astrophysical objects. On the basis of theoretical considerations and numerical simulations, we show that with no a priori physical model there are not many possibilities to obtain interpretable results. For this reason, the practice to develop more and more sophisticated statistical methods of time series analysis is not productive. Only techniques of data analysis developed in a specific physical context can be expected to provide useful results. The field of stochastic dynamics appears to be an interesting framework for such an approach. In particular, it is shown that modelling the experimental time series by means of the stochastic differential equations (SDE) represents a valuable tool of analysis. For example, besides a more direct connection between data analysis and theoretical models, in principle the use of SDE permits the analysis of a continuous signal independent of the characteristics (e.g., frequency, regularity, ...) of the sampling with which the experimental time series were obtained. In this respect, an efficient approach based on the extended Kalman filter technique is presented. Its performances and limits are discussed and tested through numerical experiments. Freely downloadable software is made available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.