Abstract
The subject of this study is the vertical mass-spring-like oscillation of a pendant droplet and its resonant detachment, which was experimentally observed in the process of laser droplet generation from a metal wire. The process was characterized by various time series, which were generated from a sequence of infrared intensity images of the process. Following a visual inspection of pendant droplet images and an analysis of a wavelet based time-frequency map of the droplet’s vertical displacement time series, the pendant droplet’s oscillation is described by a time-variable mass-spring system. Based on the characteristics of the time-frequency map, the resonant nature of the pendant droplet detachment was demonstrated. Additionally, an algebraic expression was formulated, which can be used to predict the detached droplet’s diameter as a function of the laser pulse frequency.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.