Abstract
This pilot study presents a novel statistical time-series approach for analyzing daily rainfall data in Kupang, East Nusa Tenggara, Indonesia. By using the piecewise cubic hermite interpolation algorithm, we succeeded in filling in the null values in the daily rainfall time series. We then analyzed the monthly average and its pattern using the continuous wavelet transform (CWT) algorithm, which shows the strong annual pattern of rainfall in this region. In addition, we use the rainfall anomaly index (RAI) function to standardize daily rainfall as an indicator of dry/wet conditions in this region. Then we also use the daily RAI time-series objects from 1978 to 2020 for modeling and predicting daily RAI over the next year. The result is the root mean squared error (RMSE) of 0.8424041040593219. This Prophet model is also able to capture the linear trend of increasing drought throughout the study time period and the annual pattern of wet/dry conditions which is in accordance with previous study by Aldrian and Susanto (2003).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.