Abstract
Intracranial pressure (ICP) monitoring is a key clinical tool in the assessment and treatment of patients in a neuro-intensive care unit (neuro-ICU). As such, a deeper understanding of how an individual patient's ICP can be influenced by therapeutic interventions could improve clinical decision-making. A pilot application of a time-varying dynamic linear model was conducted using the BrainIT dataset, a multi-centre European dataset containing temporaneous treatment and vital-sign recordings. The study included 106 patients with a minimum of 27h of ICP monitoring. The model was trained on the first 24h of each patient's ICU stay, and then the next 2h of ICP was forecast. The algorithm enabled switching between three interventional states: analgesia, osmotic therapy and paralysis, with the inclusion of arterial blood pressure, age and gender as exogenous regressors. The overall median absolute error was 2.98 (2.41-5.24) mmHg calculated using all 106 2-h forecasts. This is a novel technique which shows some promise for forecasting ICP with an adequate accuracy of approximately 3mmHg. Further optimisation is required for the algorithm to become a usable clinical tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.