Abstract

Large-scale aggregation and its inverse, disaggregation, problems are important in many fields of studies like macroeconomics, astronomy, hydrology and sociology. It was shown in Granger (1980) that a certain aggregation of random coefficient AR(1) models can lead to long memory output. Dacunha-Castelle and Oppenheim (2001) explored the topic further, answering when and if a predefined long memory process could be obtained as the result of aggregation of a specific class of individual processes. In this paper, the disaggregation scheme of Leipus et al. (2006) is briefly discussed. Then disaggregation into AR(1) is analyzed further, resulting in a theorem that helps, under corresponding assumptions, to construct a mixture density for a given aggregated by AR(1) scheme process. Finally the theorem is illustrated by FARUMA mixture densityÆs example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.