Abstract
In the context of the Doce river (Southeast Brazil) Fundão dam disaster in 2015, we monitored the changes in concentrations of metal(loid)s in water and sediment and their particulate and dissolved partitioning over time. Samples were collected before, during, and after the mine tailings arrival to the Doce river estuary (pre-impact: 12, 10, 3 and 1 day; acute stage: tailing day – TD and 1 day after – DA; chronic stage: 3 months and 1 year post-disaster). Our results show that metal(loid) concentrations significantly increased with time after the disaster and changed their chemical partitioning in the water. 35.2 mg Fe L−1 and 14.4 mg Al L−1 were observed in the total (unfiltered) water during the acute stage, while aqueous Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn concentrations all exceeded both Brazilian and international safe levels for water quality. The Al, Fe and Pb partitioning coefficient log (Kd) decrease in the acute stage could be related to the high colloid content in the tailings. We continued to observe high concentrations for Al, Ba, Cd, Cr, Cu, Fe, V and Zn mainly in the particulate fraction during the chronic stage. Furthermore, the Doce river estuary had been previously contaminated by As, Ba, Cr, Cu, Mn, Ni and Pb, with a further increase in sediment through the tailing release (e.g. 9-fold increase for Cr, from 3.61 ± 2.19 μg g−1 in the pre-impact to 32.16 ± 20.94 μg·g−1 in the chronic stage). Doce river sediments and original tailing samples were similar in metal(loid) composition for Al, As, Cd, Cr, Cu, Fe, V and Zn. As a result, these elements could be used as geochemical markers of the Fundão tailings and considering other key parameters to define a baseline for monitoring the impacts of this environmental disaster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.