Abstract

Abstract The decay characteristics of a mixed layer ocean passively coupled to an atmospheric model are important to the response of the climate system to stochastic or external forcing. Two salient features of such decay—the spatial-scale dependence of sea surface temperature anomaly (SSTA) decay time scales and the spatial inhomogeneities of SSTA decay modes—are addressed using intermediate-level complexity and simple analytic models of the tropical atmosphere. As expected, decay time scales increase with the spatial extent of the SSTA. Most modes decay rapidly—with characteristic decay times of 50–100 days for a 50-m mixed layer—with the decay determined by local surface flux adjustment. Only those modes with spatial scales approaching or larger than the tropical basin scale exhibit decay time scales distinctively longer than the local decay, with the decay time scale of the most slowly decaying mode of the order of 250–300 days in the tropics (500 days globally). Simple analytic prototypes of the spatial-scale dependence and the effect of basic-state inhomogeneities, especially the impact of nonconvecting regions, elucidate these results. Horizontal energy transport sets the transition between fast, essentially local, decay time scales and the slower decay at larger spatial scales; within the tropics, efficient wave dynamics accounts for the small number of slowly decaying modes. Inhomogeneities in the basic-state climate, such as the presence or absence of mean tropical deep convection, strongly impact large-scale SSTA decay characteristics. For nonconvecting regions, SSTA decay is slow because evaporation is limited by relatively slow moisture divergence. The separation of convecting- and nonconvecting-region decay times and the closeness of the slower nonconvecting-region decay time scale to the most slowly decaying modes cause a blending between local nonconvecting modes and the large-scale modes, resulting in pronounced spatial inhomogeneity in the slow decay modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.