Abstract

Numerical simulations based on the nonlinear parabolic wave equation are used to investigate time reversal of sound beams radiated by unfocused and focused sources. Emphasis is placed on nonlinear propagation distortion in the time-reversed beam, and specifically its effect on field reconstruction. Distortion of this kind, due to amplification during time reversal, has been observed in recent experiments [A. P. Brysev et al., Acoust. Phys. 44, 641-650 (1998)]. Effects of diffraction introduced by time-reversal mirrors with finite apertures are also considered. It is shown that even in the presence of shock formation, the ability of time reversal to retarget most of the energy on the source or focal region of the incident beam is quite robust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.