Abstract

In view of emerging imaging technologies based on the combination of Time Reversed Acoustics (TRA) with Nonlinear Elastic Wave Spectroscopy (NEWS) for the detection and localization of micro-damage in solids, we have investigated the benefits of chirped source signal excitation, inverse filtering techniques, and the implementation of chaotic cavity transducers to improve the quality of energy focusing, especially for weakly reverberant media. Chaotic cavity transducer focusing is defined as the hardware-software combination of a piezoelectric ceramic glued on a cavity of chaotic shape on the one hand with the reciprocal Time Reversal (or Inverse Filter) technique on the other hand. Experimental data for reverberant and nonreverberant composite plates show that the use of chirps, inverse filtering and chaotic cavity transducers significantly enhances the focusing process, and enables focusing in a nonreverberant medium using only one transducer. As a potential exploitation, the application of the chaotic cavity transducer concept for synthetic imaging is examined, revealing several properties similar to phased arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.