Abstract
Graham has shown [Z. Phys. B 26, 397 (1977)0340-224X10.1007/BF01570750] that a fluctuation-dissipation relation can be imposed on a class of nonequilibrium Markovian Langevin equationsthat admit a stationary solution of the corresponding Fokker-Planck equation. The resulting equilibrium form of the Langevin equationis associated with a nonequilibrium Hamiltonian. Here we provide some explicit insight into how this Hamiltonian may lose its time-reversal invariance and how the "reactive" and "dissipative" fluxes loose their distinct time-reversal symmetries. The antisymmetric coupling matrix between forces and fluxes no longer originates from Poisson brackets and the "reactive" fluxes contribute to the ("housekeeping") entropy production, in the steady state. The time-reversal even and odd parts of the nonequilibrium Hamiltonian contribute in qualitatively different but physically instructive ways to the entropy. We find instances where fluctuations due to noise are solely responsible for the dissipation. Finally, this structure gives rise to a new, physically pertinent instance of frenesy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.