Abstract

We consider a Josephson bijunction consisting of a thin $SIS$ $\pi$-Josephson junction sandwiched between two-dimensional semiconducting layers with strong Rashba spin-orbit interaction. Each of these layers forms an $SNS$ junction due to proximity-induced superconductivity. The $SIS$ junction is assumed to be thin enough such that the two Rashba layers are tunnel-coupled. We show that, by tuning external gates, this system can be controllably brought into a time-reversal invariant topological superconducting phase with a Kramers pair of Majorana bound states being localized at the end of the normal region for a large parameter phase space. In particular, in the strong spin-orbit interaction limit, the topological phase can be accessed already in the regime of small tunneling amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.