Abstract

Late visions and trends for the future 6G of wireless communications advocate, among other technologies, the deployment of network nodes with extreme numbers of antennas and up to terahertz frequencies as a means to enable various immersive applications. However, these technologies impose several challenges in the design of radio-frequency (RF) front ends and beamforming architectures as well as ultrawideband waveforms and computationally efficient transceiver signal processing. In this article, we revisit the time-reversal (TR) technique, which was initially experimented in acoustics, in the context of large-bandwidth 6G wireless communications, capitalizing on its high-resolution spatiotemporal focusing realized with low-complexity transceivers. We first overview the representative state of the art in TR-based wireless communications, identifying the key competencies and requirements of TR for efficient operation. Recent and novel experimental setups and results for the spatiotemporal-focusing capability of TR at the carrier frequencies 2.5, 36, and 273 GHz are then presented, demonstrating in quantitative ways the technique’s effectiveness in these very different frequency bands as well as the roles of the available bandwidth and the number of transmit antennas. We also showcase the TR potential for realizing low-complexity multiuser communications. The opportunities arising from TR-based wireless communications as well as the challenges for finding their place in 6G networks, also in conjunction with other complementary candidate technologies, are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.