Abstract

Time Reversal (TR) is a technique that may be used to focus an acoustic signal at a particular point in space. While many variables contribute to the quality of TR focusing of sound in a particular room, the most important have been shown to be the number of sound sources, signal bandwidth, and absorption properties of the medium as noted by Ribay, de Rosny, and Fink [J. Acoust. Soc. Am. 117(5), 2866-2872 (2005)]. However, the effect of room size on TR focusing has not been explored. Using the image source method algorithm proposed by Allen and Berkley [J. Acoust. Soc. Am. 65(4), 943-950 (1979)], TR focusing was simulated in a variety of rooms with different absorption and volume properties. Experiments are also conducted in a couple rooms to verify the simulations. The peak focal amplitude, the temporal focus quality, and the spatial focus clarity are defined and calculated for each simulation. The results are used to determine the effects of absorption and room volume on TR. Less absorption increases the amplitude of the focusing and spatial clarity while decreasing temporal quality. Dissimilarly, larger volumes decrease focal amplitude and spatial clarity while increasing temporal quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call