Abstract

Silica glass is an inorganic dielectric material that can be used for laser beam melting without cracking. However, the extremely high viscosity makes consolidation of powder very slow. To study the dynamics of consolidation, a 10.6μm laser beam was directed on the powder layer deposited on the solid substrate of the same material. The laser-interaction zone was lighted with green laser and filmed with a high-speed camera at 6000 fps. The process develops steadily. Neither fluctuation nor droplets are observed. An expanding consolidation zone is observed. Viscous merging of softened powder particles is supposed to be the principal mechanism of consolidation. Mathematical model based on this mechanism confirms formation of the consolidated zone in the center. Both the experiment and the model indicate that consolidation looks like propagation of a sharp front. Comparison of the experiments and the calculations estimates the consolidation front temperature of about 1800-1900K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call