Abstract

Self-assembly of nanoparticles into superlattices can be used to create hierarchically structured materials with tailored functions. We have used the surface sensitive quartz crystal microbalance with dissipation monitoring (QCM-D) technique in combination with video microscopy (VM) to obtain time-resolved information on the mass increase and rheological properties of evaporation-induced self-assembly of nanocubes. We have recorded the frequency and dissipation shifts during growth and densification of superlattices formed by self-assembly of oleic acid capped, truncated iron oxide nanocubes and analyzed the time-resolved QCM-D data using a Kelvin-Voigt viscoelastic model. We show that the nanoparticles first assemble into solvent-containing arrays dominated by a viscous response followed by a solvent-releasing step that results in the formation of rigid and well-ordered superlattices. Our findings demonstrate that QCM-D can be successfully used to follow self-assembly and assist in the design of optimized routes to produce well-ordered superlattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.