Abstract

We employ the time resolved pump probe experiment to investigate the ultrafast dynamics in a topological semimetal molybdenum phosphide (MoP), which exhibits triple degenerate points in the momentum space. Two relaxation processes with the lifetime of 0.3 and 150 ps have been observed. We attribute the fast component to the electron-phonon scattering and the slow component to the phonon-phonon scattering, respectively. Temperature dependence investigation shows that both the lifetimes of the fast and slow components enhance slightly with increasing temperature. We also successfully generate and detect a thermal-stress-induced coherent acoustic phonon mode with a frequency of 0.033 THz, which does not vary with temperature. Our ultrafast spectroscopy investigation of the quasiparticle dynamics and the coherent phonon in MoP provides useful experimental facts and information about the overall excited state dynamics and the temperature dependence of electron-phonon coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call