Abstract

Thomson scattering measurements were performed on plasma jets created from a 15- $\mu \text{m}$ -thick radial Al foil load on a 1-MA pulsed power machine. The laser used for these measurements has a maximum energy of 10 J at 526.5 nm. Using the full energy, however, significantly heats the $5\times 10^{18}$ cm−3 jet by inverse bremsstrahlung, creating a density bubble in the jet. To measure the evolving plasma parameters of this laser-heated jet, a streak camera was used to record the scattered spectrum, resulting in the sub-ns time-resolved Thomson scattering. Analysis of the streak camera image showed that the electron temperature of the jet was about 25 eV prior to the laser pulse. The laser then heated the plasma to 80–100 eV within about 2 ns. The electron temperature then stabilized for about 0.5 ns prior to falling at the end of the laser pulse. Jets made from a radial Ti foil showed more heating by the laser than the Al jets, going from 50 to over 150 eV, and heating was detected even when only 1 J of laser energy was used. Also, the ion-acoustic peaks in the scattered spectrum from the Ti jets were significantly narrower than those from Al jets, a result of several possible differences in the plasma created from these two materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.