Abstract

This paper examines the potential applications of machine learning algorithms in the analysis of optical spectra from Gd2O3:Er,Yb thermophosphor. The material was synthesized using the solution combustion method. For data acquisition, we employed pulsed laser diode excitation at 980 nm and utilized a streak camera with a spectrograph to obtain time-resolved spectral data of the optical emission from Gd2O3:Er,Yb. To ensure data consistency and facilitate visualization, we employed principal component analysis and Uniform Manifold Approximation and Projection clustering. Our findings demonstrate that, instead of the conventional approach of identifying spectral peaks and calculating intensity ratios, it is feasible to train computer software to recognize time-resolved spectra associated with different temperatures of the thermophosphor. Through our analysis, we have successfully devised a technique for remote temperature estimation by leveraging deep learning artificial neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.