Abstract

X-inactive specific transcript (Xist) RNA directs the process of X chromosome inactivation in mammals by spreading in cis along the chromosome from which it is transcribed and recruiting chromatin modifiers to silence gene transcription. To elucidate mechanisms of Xist RNA cis-confinement, we established a sequential dual-color labeling, super-resolution imaging approach to trace individual Xist RNA molecules over time, which enabled us to define fundamental parameters of spreading. We demonstrate a feedback mechanism linking Xist RNA synthesis and degradation and an unexpected physical coupling between preceding and newly synthesized Xist RNA molecules. Additionally, we find that the protein SPEN, a key factor for Xist-mediated gene silencing, has a distinct function in Xist RNA localization, stability, and coupling behaviors. Our results provide insights toward understanding the distinct dynamic properties of Xist RNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.