Abstract

We study ns scale spin-torque-induced switching in perpendicularly magnetized tunnel junctions (pMTJ). Although the switching voltages match with the macrospin instability threshold, the electrical signatures of the reversal indicate the presence of domain walls in junctions of various sizes. In the antiparallel (AP) to parallel (P) switching, a nucleation phase is followed by an irreversible flow of a wall through the sample at an average velocity of 40 m/s with back and forth oscillation movements indicating a Walker propagation regime. A model with a single-wall locally responding to the spin-torque reproduces the essential dynamical signatures of the reversal. The P to AP transition has a complex dynamics with dynamical back-hopping whose probability increases with voltage. We attribute this back-hopping to the instability of the nominally fixed layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.