Abstract

Organic dendrimers have been considered for a number of optical applications and are now of great interest for the purpose of enhanced nonlinear optical effects. In order to understand the mechanism of the enhanced effects in branched structures it is important to probe the fundamental excitations and the degree of intramolecular interactions utilizing various spectroscopic techniques. In this review, the nonlinear optical and excited state dynamics of different dendritic and other branching chromophore structures are discussed. The methods of two-photon absorption, time-resolved fluorescence, transient absorption, and three-pulse photon echo peak shift are discussed in regards to the degree of intramolecular coupling in the macromolecular systems. These techniques are also used for a comparison of the dynamics in the linear molecular analog systems as well. Thus, this review focuses on the aspect of intramolecular interactions in a branched system and its importance to enhanced nonlinear optical effects useful for modern optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.