Abstract

Micrometer-sized droplets of Rhodamine 6G solution in water and ethanol are irradiated by high-intensity nanosecond pulses from a frequency-doubled Nd:YAG laser. Coupling of the spontaneous fluorescence emission with natural resonant modes of the spherical droplets results in stimulated emission, with each droplet behaving like a laser cavity. Spectral observations suggest that droplet lasing emission is supported by resonances of a single mode order. The emission exhibits faster rise times and is shorter lived than corresponding bulk-liquid fluorescence. Lasing in droplets is generally initiated almost simultaneously with elastic scattering, unlike stimulated Raman scattering, which is significantly delayed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.