Abstract
The photochemistry of suprofen (SPF) was investigated by femtosecond transient absorption (fs‐TA), resonance Raman (RR) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic methods to gain additional information so as to better elucidate the possible photochemical reaction mechanism of suprofen in several different solvents. In neat acetonitrile (MeCN), the fs‐TA and ns‐TR3 experimental data indicated that the lowest lying excited singlet state S1 (nπ*) underwent an efficient intersystem crossing process (ISC) to the excited triplet state T3 (ππ*), followed by an internal conversion (IC) process to T1 (ππ*). In the aqueous solution, a triplet biradical species (3ETK‐1) was obtained as the product of a decarboxylation process from triplet suprofen anion (3SPF−) and the reaction rate of the decarboxylation process was determined by the concentration of H2O. A protonation process for 3ETK‐1 leads to formation of a neutral species (3ETK‐3) that was directly observed by ns‐TR3 spectra, then this 3ETK‐3 species decayed via ISC process to generate final product. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.