Abstract

Depolarized light scattering is widely used to probe the spatial correlation of optical anisotropy in crystals, liquid crystals, and viscoelastic materials under stress, and a powerful means to study a non-equilibrium pattern evolution process of such a system. To follow the temporal change in the diagonal and off-diagonal contributions of the dielectric tensor, it is highly desirable to measure two-dimensional (2D) polarized (HH: horizontally transmitted, horizontally received) and depolarized (VH: vertically transmitted, horizontally received) scattering patterns simultaneously in a time-resolved manner. We develop a light scattering system with a video-rate time resolution as well as very high sensitivity to optical anisotropy. To detect extremely weak VH scattering from a sample without suffering from residual birefringence of the optical system itself and leakage of strong HH scattering signals, we use an objective lens specially designed for polarizing microscopy and Glan-laser prisms, respectively. This system enables us to experimentally elucidate the origin of VH scattering: we use the ratio of the VH and HH scattering intensity as a fingerprint for whether a 2D VH scattering pattern is caused by (i) optical anisotropy (intrinsic birefringence) or merely by (ii) spatial inhomogeneity of optically isotropic materials. We verify the validity of this method for a process of phase separation in a binary mixture of isotropic liquids. The simultaneous HH and VH measurement allows us to directly estimate the ratio of VH and HH scattering intensity accurately. The careful comparison of this ratio with a simple theory unambiguously demonstrates that the 2D VH scattering pattern is caused by the scattering angle dependence of the diffraction efficiency of light with the two polarization directions. That is, the origin of VH scattering is due to geometrical effects of the inhomogeneous distribution of the refractive index and not due to optical birefringence, as it should be for the optically isotropic sample. This method using the ratio of VH and HH scattering intensity may be widely used for distinguishing the two types of origins for a VH scattering pattern in an unambiguous manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call