Abstract

RNA selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry exploits the discovery that conformationally dynamic nucleotides preferentially adopt configurations that facilitate reaction between the 2'-OH group and a hydroxyl-selective electrophile, such as benzoyl cyanide (BzCN), to form a 2'-O-adduct. BzCN is ideally suited for quantitative, time-resolved analysis of RNA folding and ribonucleoprotein (RNP) assembly mechanisms because this reagent both reacts with flexible RNA nucleotides and also undergoes auto-inactivating hydrolysis with a half-life of 0.25 s at 37 degrees C. RNA folding is initiated by addition of Mg(2+) or protein, or other change in solution conditions, and nucleotide resolution structural images are obtained by adding aliquots of the evolving reaction to BzCN and then 'waiting' for 1 second. Sites of the 2'-O-adduct formation are subsequently scored as stops to primer extension using reverse transcriptase. This time-resolved SHAPE protocol makes it possible to obtain 1-second structural snapshots in time-resolved kinetic studies for RNAs of arbitrary length and complexity in a straightforward and concise experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call