Abstract
The time-resolved resonance Raman spectrum of the short-lived triplet (dsigmapsigma) excited state of Rh(2)(TMB)(4)(2+) (TMB = 2,5-dimethyl-2,5-diisocyanohexane) was obtained by lowering the temperature of a 3:1 ethanol/methanol solution until the excited-state lifetime became much greater than the width of the pulsed laser excitation source. The metal-metal stretching frequency is 151 cm(-)(1) in the excited triplet state, as compared to 50 cm(-)(1) in the ground state. The diatomic harmonic force constants derived from these frequencies are in a 9.12:1 ratio (excited state/ground state), consistent with the simple molecular orbital description that predicts that the Rh-Rh bond order is greater in the excited state than in the ground state. A comparison of Rh(2)(TMB)(4)(2+) and Rh(2)b(4)(2+) (b = 1,3-diisocyanopropane) Raman data indicates that the nature of the bridging ligand considerably affects the ground- and excited-state metal-metal stretching frequencies and that the population of the psigma orbital may have very little effect on the bonding in the excited triplet state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.