Abstract

We present the first time-resolved pump-probe experiment performed at synchrotron SOLEIL at the CRISTAL diffraction beamline. The time-resolved setup will be used in the near future for sub-ns time resolution experiments. We studied spin state switching in a [TPA Fe(III) TCC] PF6 single crystal as induced by a ¼ 6 ns laser pulse (1064 nm), by measuring the 3D diffraction volume of the 002 Bragg reflection as a function of time after excitation. The intensity profiles (rocking curves) are found to evolve at two characteristic timescales, namely hundreds of ns and few ¹s, exhibiting subtle profile changes and peak broadenings. Consistently with previous studies, we interpret these features as due to structural inhomogeneities related to laser-induced deformation wave propagation and heat diffusion, which both start from the absorbing sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.