Abstract

Photoluminescence (PL) spectra and kinetics of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well (QW) heterostructures grown by molecular beam epitaxy technique are studied. Interband PL spectra are observed from 18 K up to the room temperature. Time resolved studies reveal an additional PL line with slow kinetics (7 μs at 18 K) related to deep defect states in barrier layers. These states act as traps counteracting carrier injection into QWs. The decay time of PL signal from QW layers is about 5 μs showing that gain can be achieved at wavelengths 10–20 μm by placing such QWs in HgCdTe structures with waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.