Abstract

Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested.

Highlights

  • This work presents a review of the analysis of cultural heritage using time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) which we illustrate through applied case studies

  • In addition to the emission spectrum recorded from the surface of an object, the dynamics of the fluorescence, or luminescence, emission can be useful in the analysis and monitoring of cultural heritage and cultural heritage materials, which is the focus of the analysis presented in this article

  • While ps-resolved analysis using a streak camera is confined to the laboratory, analysis of pigments and polymers demonstrates how fluorescence spectra shift, how fluorescence lifetime changes with degradation or how it may depend on pigment manufacture

Read more

Summary

Introduction

This work presents a review of the analysis of cultural heritage using time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) which we illustrate through applied case studies. Both techniques are non-destructive and based on the use of ps or ns pulsed lasers and gated detection for the analysis of range of organic and inorganic materials. The analysis of works of art often begins with the visual examination of the surface of an object under UV light This is because the spectrum of the optical emission from the surface as well as its spatial distribution in a field of view can provide conservators, art historians, and scientists key information regarding the presence of heterogeneities on a painting or a sculpture, signed papers or modern design objects. The visual examination of works of art relies on the careful choice of both filtered UV-illumination and high-sensitivity color camera, providing a method for conservators to detect materials which may not be visible under normal lighting conditions

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.