Abstract

Time-resolved luminescence spectra of europium in parent and silylated microporous-mesoporous materials were analyzed by using the maximum entropy method and global multi-exponential fitting, providing lifetime distributions and decay-associated spectra. Silylation was used as a method for the hydrophobization of the materials surface in order to inhibit the moisture intrusion at the lanthanide's sites. Due to the well-known sensitivity of the europium photoluminescence properties to the local environment, our approach can simplify the description of the complex structure-photoluminescence relationships in terms of the individual europium species that contribute to the total emission of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call