Abstract

Temporal decay characteristics of 1.54 µm photoluminescence (PL) were investigated in β-FeSi2 and Si-implanted Si samples grown by ion-beam-synthesis (IBS). In the samples, the band-edge PL of β-FeSi2 (A-band) and the dislocation-related PL (D1-band) of Si were both observed at ∼0.8 eV. Regarding the dependence of the PL decay curves on excitation power density (P), PL decay curves without extrinsic effects were obtained at a low P of P ≤ 4.3 mW/cm2. The PL decay times obtained at a low P showed clear differences between the A-band and the D1-line. The result showed that the band-edge PL of β-FeSi2 was distinguished from the dislocation-related PL of Si by the PL decay times. The intrinsic PL decay times of β-FeSi2 were determined to be τ1 = 70–100 ns and τ2 = 550–670 ns at 5 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call