Abstract
The aim of this paper is to determine the influence of the position of the electrodes on the range of a plasma jet, for specific experimental conditions, by using time-resolved optical emission spectroscopy. The optimal position of the electrodes is determined for a fixed gas flow rate and applied excitation voltage. We characterize the helium plasma jet for different distances from the end of the glass tube, showing detailed results for four different electrode positions from the jet nozzle (7, 15, 30 and 50 mm). It was found that at the distance of 15 mm, the length of the plasma jet is at its maximum. The highest speeds of the plasma package travelling outside the glass tube of the atmospheric plasma jet are obtained for the same electrode configuration (15 mm from the jet nozzle). With the electrodes positioned at smaller distances from the nozzle, the plasma plume was much shorter, and at the larger distances the plasma did not even leave the glass tube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.