Abstract

The reaction between metallic fuel and oxygen carriers produced by the laser heating of aluminum and copper oxide (CuO) nanoparticles (NPs) was investigated (NPs) using movie mode dynamic transmission electron microscopy (MM-DTEM), which enables multiframe imaging with nanometer spatial and nanosecond temporal resolution. Nanothermite materials heated in situ at ∼1011 K/s showed significant morphological changes on time scales of 1–5 μs. The resulting structures were typically phase-separated into adjoining spheroids. Further analysis with energy dispersive spectroscopy (EDS) and selected area electron diffraction (SAED) was used to determine the extent of reaction. Bulk scale reaction experiments using temperature jump wire heating (∼105K/s) revealed that both the reaction products and general processes were comparable to the reactions driven by the DTEM laser heating. These results indicate that condensed phase and interfacial reactions are fast and dominant mechanisms in nanothermite combustion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call