Abstract

A specially designed micro-mixer made of silicon, calcium fluoride, and silicone with an optical transmission path of 8 μm has been used for mid-IR spectroscopy monitoring of mixing-induced chemical reactions in the low millisecond time regime. The basic principle of the proposed continuous-flow technique is to mix two liquids introduced in two times two alternatingly stacked layers through diffusion at the entrance of a 200 μm wide, 1 cm long micro-fluidic channel also serving as measurement area. By using this special, dedicated arrangement, diffusion lengths and hence the mixing times can be significantly shortened and the overall performance improved in comparison to previous systems and alternative methods. Measurements were carried out in transmission mode using an Fourier transform infrared (FTIR) microscope, recording spectra with spot sizes of 180 × 100 μm(2) each at defined spots along this channel. Each of these spots corresponds to a specific reaction time: moving the measurement spot towards the entry yields shorter reaction times, moving it towards the channel's end gives longer reaction times. This principle is generic in nature and provides a solution for accurate, chemically induced triggering of reactions requiring the mixing of two liquid reagents or reagent solutions. A typical experiment thus yields up to 85 time-coded data points, covering a time span from 1 to 80 ms at a total reagent consumption of only about 125 μL. Using the fast neutralization reaction of acetic acid with sodium hydroxide as a model, the time required for 90% mixing was determined to be around 4 ms. Additionally, first experiments on ubiquitin changing its secondary structure from native to "A-state" were carried out, illustrating the potential for time-resolved measurements of proteins in aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.