Abstract

AbstractThe radiative recombination of two-dimensional (2D) carriers in an n-channel GaAs/AIGaAs heterojunction has been studied with time resolved photoluminescence (PL). Two bands related to the recombination of 2D carriers, the so called H-band 1 (HB1) and H-band 2 (HB2), are observed in PL. The spectral shape and position is strongly dependent on the sample and the experimental conditions. The H-bands are e.g. found to shift within a large energy range with the excitation intensity. We report here on the dependence of the decay times of the H-bands on their spectral position. The results are consistent with a recombination process involving 2D electrons, confined in the interface notch, and three-dimensional (3D) holes either from the valence band (HB1) or from neutral acceptors (HB2) in the active GaAs layer. The decay times of HB1 are found to vary in the range of 2-100 ns, while the corresponding decay times of HB2 are in the range of 100 ns - 10 µs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.