Abstract
We constructed a time-resolved photovoltage measurement system and examined the photovoltage kinetics of wild-type bacteriorhodopsin, its D96N mutant, and halorhodopsins from Halobacterium salinarum and Natronobacterium pharaonis. Upon illumination with a laser flash, wild-type bacteriorhodopsin showed photovoltage generation with fast (10-100 micros range) and slow (ms range) components while D96N lacked the latter, as reported previously [Holz, M., Drachev, L.A., Mogi, T., Otto, H., Kaulen, A.D., Heyn, M.P., Skulachev, V.P., and Khorana, H.G. (1989) Proc. Natl. Acad. Sci. USA 86, 2167-2171]. In contrast, photovoltage generation in halorhodopsins from H. salinarum and N. pharaonis was significant only in the ms time range. On the basis of the photovoltage kinetics and photocycle, we conclude that major charge (chloride) movements within halorhodopsin occur during the formation and decay of the N intermediate in the ms range. These observations are discussed in terms of the "Energization-Relaxation Channel Model" [Muneyuki, E., Ikematsu, M., and Yoshida, M. (1996) J. Phys. Chem. 100, 19687-19691].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.