Abstract
In light of the ongoing discussion about flow-mediated arterial remodeling, it was the aim of this report to demonstrate the detailed assessment of 3-dimensional vascular hemodynamics by high-field magnetic resonance imaging in healthy volunteers and to illustrate its potential in comparison with results in a patient with stenosis. All examinations consisted of flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla. Retrospective blood flow visualization and segmental quantification of wall shear stress and oscillatory shear index were performed. The results from 11 healthy individuals were compared with a 13-year-old patient with aortic stenosis who received a combined protocol with time-resolved 3-dimensional magnetic resonance angiography before and 5 and 9 months after intervention. Evaluation of normal blood flow characteristics demonstrated predominantly right-handed helical flow in the ascending aorta. Vortex formation was observed in 1 of 11 volunteers. Consistently high segmental wall shear stress was found along the circumference of the ascending aorta (average wall shear stress = 0.191 +/- 0.06 N/m(2)) and descending aorta (average 0.191 +/- 0.06 N/m(2)). Compared with volunteers, the patient revealed substantial flow changes proximal and distal to the stenosis. Blood flow alterations in the ascending aorta were also observed associated with changes in velocities and wall shear stress that gradually normalized after intervention. Flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla can provide deeper insights into hemodynamic alterations in the diagnosis and follow-up of aortic pathologies. These findings indicate the potential of the methodology for the evaluation of effects of localized pathologies on the entire vascular system, which will have to be confirmed in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.