Abstract

Time-resolved scanning Kerr microscopy has been used to directly observe magnetostatically coupled transverse domain walls (TDWs) in a pair of closely spaced, curved nanowires (NWs). Kerr images of the precessional response of the magnetic domain to either side of the TDW revealed the TDW as a minimum in the Kerr signal in the region of closest NW separation. When the TDWs were ejected from the NW pair, the minimum in the Kerr signal was no longer observed. By imaging this transition, the static de-coupling field was estimated to be in the range from 38 to 48 Oe in good agreement with a simple micromagnetic model. This work provides a novel technique by which DC and microwave assisted decoupling fields of TDWs may be explored in NW pairs of different width, separation, and curvature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call