Abstract

This paper presents a combined spectroscopic and theoretical analysis of a trinuclear [Pd3{Si(mt(Me))3}2] complex (mt(Me) = methimazole) which has been demonstrated to be a potential catalyst for coupling reactions. It is a highly symmetric model system (D3 in the electronic ground state) for the investigation of electronic states and the structure of polynuclear transition metal complexes. Different time-resolved IR spectroscopic methods covering the femtosecond up to the microsecond range as well as density functional computations are performed to unravel the structure and character of this complex in the electronically excited state. These are the first time-resolved IR studies on a trinuclear Pd complex. Based on the interplay between the computational results and those from the IR studies a (3)A state is identified as the lowest lying triplet state which has C2 symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.