Abstract

We report a simple optical technique to measure time-resolved nanoscale surface profile of an evaporating sessile fluid droplet. By analyzing the high contrast Newton-ring like dynamical fringes formed by interfering Fresnel reflections, we demonstrated λ/100 ≈ 5 nm sensitivity in surface height (at 0.01–160 nm/s rate) of an evaporating water drop. The remarkably high sensitivity allowed us to precisely measure its transient surface dynamics during contact-line slips, weak perturbations on the evaporation due to external magnetic field and partial confinement of the drop. Further, we measured evaporation dynamics of a sessile water drop on soft deformable surface to demonstrate wide applicability of this technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.