Abstract

Incipient-wetness impregnation of gamma-Al(2)O(3) with HAuCl(4) and subsequent removal of chlorine with NaOH, and deposition-precipitation of HAuCl(4) on TiO(2) at pH 7 resulted in supported Au(3+) species. Time-resolved in situ XAS at the Au L(3) edge showed that the Al(2)O(3)-supported oxidic or hydroxidic species were reduced in hydrogen at 440 K to yield small metallic gold clusters. The Au(3+) precursor decomposed to metallic gold in inert atmosphere at 573 K and in oxidizing atmosphere above 623 K. In all atmospheres, initially small clusters were formed that gradually grew with increasing temperature. The TiO(2)-supported species were considerably less stable. In hydrogen and carbon monoxide, Au(0) clusters of 1 to 1.5 nm were formed at room temperature, which was the lowest temperature studied. In inert and oxidizing atmosphere, the Au(3+) precursor decomposed fully to metallic gold at 530 K, as shown by XAS and temperature-programmed experiments. Large clusters were obtained already in the initial stage of reduction. Residual chlorine inhibited the reduction and led to sintering of the gold clusters. Exposure of the TiO(2)-supported catalyst precursor to light or the X-ray beam led to partial reduction, and STEM showed that storage of the reduced gold clusters under ambient conditions led to agglomeration and bimodal cluster-size distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.