Abstract

Electrochemical oxidation of the antiferromagnetically ordered SrCoO(2.5), with brownmillerite-type structure, to the cubic ferromagnet SrCoO(3), with perovskite structure, has been investigated in situ by neutron diffraction as well as by X-ray absorption fine structure (XAFS) spectroscopy in specially designed electrochemical cells. The neutron diffraction experiments were performed twice, using two different wavelengths (lambda = 1.2921(2) and 4.74 A) in order to better discriminate structural and magnetic changes as functions of the charge transfer. From the neutron diffraction experiments, two intermediate phases, SrCoO(2.75) and SrCoO(2.82)(+/-)(0.07), were characterized. No superstructure reflections were observed for the corresponding SrCoO(2.75) phase. Instead we observed here, for the first time, 3D oxygen ordering during an oxygen intercalation reaction, as established for SrCoO(2.82)(+/-)(0.07), which can be described as a tetragonal unit cell, related to the perovskite cell by a approximately 2(a radical2) and c approximately 2a. The structure of this intermediate phase confirms the strongly topotactic character of the oxygen intercalation reaction. We were also able to prove, from in situ XAFS spectroscopy at the Co absorption edge, that the evolution of the Co valence state from formally +3 for SrCoO(2.5) to +4 for the final reaction product (SrCoO(3.0)) does not proceed continuously but gives evidence for the formation of O(-) species for stoichiometries corresponding to SrCoO(2.82)(+/-)(0.07). The use of neutrons (vs X-rays) in the diffraction experiments and the choice of the transmission (vs fluorescence) mode in the XAFS experiment guarantee that the obtained data well represent bulk and not just surface properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.