Abstract

Though III-V/Si(100) heterointerfaces are essential for future epitaxial high-performance devices, their atomic structure is an open historical question. Benchmarking of transient optical in situ spectroscopy during chemical vapor deposition to chemical analysis by X-ray photoelectron spectroscopy enables us to distinguish between formation of surfaces and of the heterointerface. A terrace-related optical anisotropy signal evolves during pulsed GaP nucleation on single-domain Si(100) surfaces. This dielectric anisotropy agrees well with the one calculated for buried GaP/Si(100) interfaces from differently thick GaP epilayers. X-ray photoelectron spectroscopy reveals a chemically shifted contribution of the P and Si emission lines, which quantitatively corresponds to one monolayer and establishes simultaneously with the nucleation-related optical in situ signal. We attribute that contribution to the existence of Si-P bonds at the buried heterointerface. During further pulsing and annealing in phosphorus ambient, dielectric anisotropies known from atomically well-ordered GaP(100) surfaces superimpose the nucleation-related optical in situ spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call