Abstract

During laser melting of metals, localized metal evaporation resulting in the formation of a keyhole shaped cavity can occur if processing conditions are chosen with high power density. An unstable keyhole can have deleterious effects in certain applications (e.g., laser powder bed fusion) as it increases the likelihood of producing defects such as porosity. In this work, we propose a pipeline that enables complete segmentation and extraction of various geometric features in keyholing conditions. In situ synchrotron high-speed X-ray visualization at the Advanced Photon Source provides large datasets of experimental images with a high spatio-temporal resolution across a range of laser parameters for Ti-6Al-4V. Computer vision image processing techniques were used to extract time-resolved quantitative geometric features (e.g., depth, width, front wall angle) throughout keyhole evolution which were subsequently analyzed to understand the relationship between the variation of local keyhole geometry and processing conditions. This analysis is the first to employ a data-driven approach to further our understanding of the keyholing process regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.