Abstract

Time-resolved Fourier transform infrared spectroscopy (FT-IR) offers distinct advantages concerning restrictions pertinent to biomolecules. In particular, it is possible to monitor the temporal evolution of the reaction mechanism of complex machineries as membrane proteins, where other techniques encounter significant experimental difficulties. Here, we present the classical principles and experimental realizations of time-resolved FT-IR spectroscopy together with recent developments employed in our laboratory. Examples from applications to retinal proteins are reviewed that underline the impact of time-resolved FT-IR spectroscopy on the understanding of protein reactions on the level of single bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call