Abstract

The implementation of time-resolved step-scan FT-IR spectroscopy with a commercial interferometer is described. With the use of the photo-reaction of the biological system bacteriorhodopsin as an example which exhibits infrared spectral changes smaller than 10−2 absorbance units, the quality of the method is demonstrated. A comparison with conventional flash-photolysis experiments with a monochromatic infrared monitoring beam clearly demonstrates the multiplex advantage. The advantage of covering the total time course of the reaction allows for a variety of data analysis, such as forming difference spectra between intermediates of the reaction and the deduction of time courses of absorbance changes at selected wavenumbers. The mirror stability is better than ±1.5 nm, which is sufficient for the reliable measurement of small absorbance changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.